On duality theory for non-convex semidefinite programming

نویسندگان

  • Wenyu Sun
  • Chengjin Li
  • Raimundo J. B. de Sampaio
چکیده

In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater’s condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater’s condition fails. We point out that the results of [2] can be regarded as a special case of our result. Mathematics Subject Classifications: 65K05, 90C22, 90C26,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

Stable Zero Duality Gaps in Convex Programming: Complete Dual Characterisations with Applications to Semidefinite Programs∗

The zero duality gap that underpins the duality theory is one of the central ingredients in optimisation. In convex programming, it means that the optimal values of a given convex program and its associated dual program are equal. It allows, in particular, the development of efficient numerical schemes. However, the zero duality gap property does not always hold even for finite dimensional prob...

متن کامل

Semidefinite programming duality and linear time-invariant systems

Several important problems in control theory can be reformulated as semidefinite programming problems, i.e., minimization of a linear objective subject to Linear Matrix Inequality (LMI) constraints. From convex optimization duality theory, conditions for infeasibility of the LMIs as well as dual optimization problems can be formulated. These can in turn be reinterpreted in control or system the...

متن کامل

A Brief Introduction to Duality Theory

These notes give an introduction to duality theory in the context of linear and positive semidefinite programming. These notes are based on material from Convex Analysis and Nonlinear Optimization by Borwein and Lewis and Numerical Optimization by Nocedal and Wright. Two examples are given to show how duality can be used. The first optimization application is to find the matrix in an affine fam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals OR

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2011